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Abstract. For optimal control problems satisfying convexity conditions in the state as well as
the velocity, the optimal value is studied as a function of the time horizon and other parameters.
Conditions are identified in which this optimal value function is locally Lipschitz continuous and
semidifferentiable, or even differentiable. The Hamilton–Jacobi theory for such control problems
provides the framework in which the results are obtained.
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1. Introduction

A very wide variety of problems in optimal control can be posed in the form of a
generalized problem of Bolza in the calculus of variations,

minimize
∫ �

0
L�t�x�t��ẋ�t��dt+l�x�0��x�����

by allowing the functions L and l in the formulation to take values in IR=
�−���� instead of just IR=�−����. For instance a control problem of the
type

minimize
∫ �

0
f �t�x�t��u�t��dt+h�x���� subject to

ẋ�t�∈F�t�x�t��u�t��� u�t�∈U�t�� x�0�=a� x���∈E�

is covered by letting l�b�c� = h�c� if b = a and c ∈ E, but l�b�c� = �
otherwise, and letting L�t�x�v� the infimum of f �t�x�u� over all u∈U�t� such that
F�t�x�u��v. (When there is no such u, the infimum is�, by definition.)
In this paper, we concentrate on a class of problems that fit this picture, em-

phasizing convexity while looking at parameters which influence the solutions.
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The basic model we adopt is
������

minimize g�x�0��+
∫ �

0
L�x�t��ẋ�t��dt+h�����x���� over all x∈�1

n�0����

where �1
n�0��� is the space of absolutely continuous functions x�·� � �0���→ IRn

(arcs), and � is a parameter vector ranging over an open set O⊂ IRd. Our interest
lies in studying the effects of � and the time parameter � on the optimal value in
������. In other words, we aim at understanding properties of the value function
p defined by

p����� �= inf ������ for �����∈O×�0���� (1)

For a function such as p, produced through optimization, continuity cannot
usually be expected, let alone differentiability. However, we will be able to identify
some situations where p does possess directional derivatives in a strong sense,
and even cases where p is smooth, i.e., belongs to �1. This will be accomplished
by relying on convexity assumptions in the state arguments and utilizing tools in
convex analysis and general variational analysis [12].

Basic Assumptions (A).
(A0) The function g is convex, proper and lsc on IRn.
(A1) The function L is convex, proper and lsc on IRn×IRn.
(A2) The set F�x� �={

v
∣∣L�x�v�<�}

is nonempty for all x, and there is a
constant  such that dist�0�F �x��� 

(
1+�x�) for all x.

(A3) There are constants ! and " and a coercive, proper, nondecreasing func-
tion # on �0��� such that L�x�v�� #

(
max

{
0� �v�−!�x�})−"�x� for all x and

v.
(A4) The function h is finite on O×�0���×IRn, where O is an open subset

of IRd, and h�����$� is convex with respect to $.

The joint convexity of L�x�v� in x and v in (A1), combined with the convexity
in (A0) and (A4), is the hallmark of “full” convexity. Control problems enjoying
full convexity were first investigated in depth in the 1970s, cf. [7–11]. In such
problems, locally optimal solutions are globally optimal, and there are numerous
other features in the global optimization category as well.
Assumptions (A0)–(A3) come out of the Hamilton–Jacobi theory for fully con-

vex problems of Bolza as presented in [13] and [14] (see also [15] amd [5]),
and they go back even earlier to the cited work in the 1970s through [11]. The
properness of an extended-real-valued function means that it does not take on
−�, but is not identically�; “lsc” abbreviates lower semicontinuous. The growth
condition in (A3) serves in place of a Tonelli condition (much stronger), which
would be unworkable for control applications. Assumption (A2) imposes a very
weak kind of linear growth on the differential inclusion that underlies the problem.
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Note that it excludes implicit state constraints (which would be signaled by F being
empty-valued in some regions of IRn).
In terms of the associated Hamiltionian function H , defined through the

Legendre–Fenchel transform by

H�x�y� �= supv
{
v ·y−L�x�v�

}
(2)

and yielding L back through the reciprocal formula

L�x�v�= supy
{
v ·y−H�x�y�

}
� (3)

assumptions (A1)–(A3) correspond to H being finite on IRn×IRn with H�x�y�
convex in x and concave in y, and also satisfying certain mild growth conditions
which are symmetric with respect to the x and y arguments; cf. [13, Theorem 2.3].
The connection with Hamilton–Jacobi theory arises through consideration of

the auxiliary problem
����$�

minimize g�x�0��+
∫ �

0
L�x�t��ẋ�t��dt over all x∈�1

n�0��� having x���=$

and its value function

V ���$� �=
{
inf�����$�� when � >0�
g�$� when �=0�

(4)

which represents the forward propagation of g with respect to L. In particular,
g could be the indicator function of a given point a: one could have g�$�=0 if
$=a, but g�$�=� if $ =a.
Properties of V under assumptions (A0)–(A3) were recently studied in great

detail in [13] and [14]. Since the behavior of V ���$� with respect to $ typically
has to be distinguished from its behavior with respect to � , it is helpful to introduce
the notation

V� �=V ���·� � IRn→ IR (5)

and think of V� as an extended-real-valued function on IRn which “moves” as �
goes from 0 to �. In [13, Theorem 2.1], it was demonstrated that V� is convex,
proper and lsc, and depends epi-continuously on � (i.e., its epigraph depends con-
tinuously on � in the sense of set convergence, a topic expounded for instance in
[12]).
The “motion” of Vt has been characterized by a generalized Hamilton–Jacobi

equation in terms of the subgradient mapping )V of V as a whole. It was proved
in [13, Theorem 2.5] that

*+H�$�+�=0 for all �*�+�∈)V ���$� when � >0� (6)

and indeed, the even stronger property holds that

�*�+�∈)V ���$� ⇐⇒ +∈)V��$� and*=−H�$�+�� (7)
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The subgradients in (6) follow the definition patterns in [12], which omit the con-
vexification step of Clarke [2], but in the case of V they have actually been shown in
[13] to coincide with Clarke’s subgradients. In (7), )V� is the subgradient mapping
of convex analysis [6] associated with the convex function V� .
In fact, V is the unique solution to (6). This was not known in [13], but was

established subsequently by Galbraith [3, 4], by way of new uniqueness Hamilton–
Jacobi theorems extending beyond the framework of full convexity and also beyond
that of viscosity methodology (e.g., as seen in [1]).
An elementary but fundamental relationship between p and the more basic

value function V will serve as the key to our analysis here. It concerns the sub-
problem

�̂����� minimize V ���$�+h�����$� over all $∈ IRn�

which is aimed at capturing the finite-dimensional aspect of the infinite-dimensional
optimization problem������. Note that the convexity ofh��� ��·� in (A4) ensures
the convexity of the function of $ being minimized in �̂�����.

Proposition 1 (value function reduction). The optimal value function p for
����$� is simultaneously the optimal value function for �̂���$�:

p�����= inf �̂�����= inf ������� (8)

Furthermore, optimal solutions to these problems are connected by

x�·�∈ argmin ������ ⇐⇒
{
x�·�∈ argmin ����$�
for some $∈ argmin �̂������

(9)

Proof. These relationships are evident from the definitions. �

This decomposition, along with properties of V and ����$� developed in [13]
and [14] will furnish the platform for understanding p.
It is known from [13, Theorem 5.2] that argmin ����$�, the optimal solution

set in ����$�, is nonempty whenever the pair ���$�∈�0���×IRn is such that
V ���$�<�; moreover, if )V��$� =∅, every x�·�∈ argmin ����$� must belong
to ��

n �0���, the space of Lipschitz continuous arcs (having ẋ in ��
n �0��� instead

of just �1
n�0���). Through this result on the existence of solutions x�·� to ����$�,

the question of the existence of solutions to ������ is reduced to that of the
existence of solutions $ to �̂�����.
Optimality conditions for ������ likewise can be reduced to those for �̂�����,

which in turn may be derived from convex analysis in terms of subgradients of V
and hwith respect to their $ argument. Hamiltonian trajectories give major support
in this, because of their tie to the subgradients of V . A Hamiltonian trajectory over
an interval I⊂ IR is a trajectory �x�·��y�·��∈�1

n�I�×�1
n�I� of the generalized

Hamiltonian dynamical system

ẋ�t�∈)yH�x�t��y�t��� −ẏ�t�∈)x�−H��x�t��y�t��� (10)
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where the subgradients are those of convex analysis for the convex functionsH�x�·�
and H�·�y�.
The differential inclusion (10) is very close to a differential equation, because

)yH�x�y� and )x�−H��x�y� are singletons for almost every �x�y�∈ IRn×IRn;
cf. [13, Proposition 6.1]. One has

+∈)V��$� ⇐⇒
{∃ Hamiltonian trajectory �x�·��y�·�� with
y�0�∈)g�x�0�� and �x����y����=�$�+��

�11�

This prescription, from [13, Theorem 2.4], provides an extended method of char-
acteristics, in subgradient form, which operates globally for solving the Hamilton–
Jacobi equation in (6).
The existence of an arc y�·� satisfying with x�·� the condition in (11) is always

sufficient for having x�·�∈ argmin ����$�, and it is necessary if )V��$� =∅
(which holds in particular if $ is in the relative interior of the convex set domV�={
$
∣∣V��$�<�}

); cf. [13, Theorem 6.3].
Another object that will be crucial in our endeavor is the dualizing kernel as-

sociated with the Lagrangian L, which is the function K on �0���×IRn×IRn

defined by

K���$�-��= inf
{
x�0� ·-+

∫ �

0
L
(
x�t��ẋ�t�

)
dt
∣∣∣x���=$

}
� (12)

for � >0 and extended to �=0 by

K�0�$�-�=$ ·-� (13)

This function, introduced in [14], is known to be finite everywhere, convex with
respect to $, concavewith respect to-, and continuously differentiable with respect
to � , and it satisfies a generalized Hamilton–Jacobi equation of Cauchy type in the
strong form

−)K

)�
���$�-�=H�$�+� for all+∈)$K���$�-�� (14)

with (13) as initial condition [14, Theorem 3.1]. The results of Galbraith [3], [4],
establish that K�·�·�-� is the unique solution to this Hamilton–Jacobi equation in
� and $. Earlier only a weaker version of uniqueness, depending on the convexity–
concavity and a dual Hamiltonian–Jacobi equation, had been verified in [14]. The
dualizing kernel K yields a lower envelope representation of V :

V ���$�=sup
-

{
K���$�-�−g∗�-�

}
� (15)

cf. [14, Theorem 2.5], where g∗ is the convex function that is conjugate to g under
the Legendre–Fenchel transform,

g∗�y� �=supx
{
x ·y−g�x�

}
� g�x� �=supy

{
x ·y−g∗�y�

}
� (16)

In our focus on the parametric analysis of problem ������, we will eventually
require certain other properties besides the ones already listed in (A).
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Additional Assumptions (A′).
(A5) The function g on IRn is coercive.
(A6) The function h on O×�0���×IRn has the property that h�����$� is

differentiable with respect to ����� for each $, and the gradient in these arguments
depends continuously on �����$�.

Coercivity of g in (A5) means that g�$�/�$�→� as �$�→�; here �·� denotes
the Euclidean norm. This growth condition on g is equivalent to the finiteness of
the conjugate function g∗.
The smoothness in (A6) is destined for establishing a property of p called

semidifferentiability. In general for a function f on an open subset of IRm, semi-
differentiability means that, at each point z of that subset, the difference quotient
functions

12f �z��z
′� �= �f �z+2z′�−f �z��/2 for 2>0

(which are defined for z′ in a neighborhood of 0 that expands to fill all of IRm

as 2↘0) converge uniformly on bounded sets to a finite function on IRm. This
concept is examined from many angles in [12, 7.21]. The limit function, symbol-
ized by df �z� and thus having values denoted by df �z��z′�, need not be a linear
function, but when it is, semidifferentiability turns into ordinary differentiability.
In the presence of local Lipschitz continuity, semidifferentiability is equivalent to
the existence of one-sided directional derivatives: one simply has

df �z��z′�= lim
2↘0

�f �z+2z′�−f �z��/2�

In particular, any finite convex function on IRn is locally Lipschitz continuous
and semidifferentiable everywhere [12, 9.14 and 7.27]. As another example, the
dualizing kernel K was itself shown in [14, Theorem 3.6] to be locally Lipschitz
continuous and semidifferentiable with respect to all of its arguments.

2. Main Developments

In obtaining the semidifferentiability of p, along with subgradient properties of p
that allow the identification of cases in which p is smooth, several consequences
of our assumptions (A4) and (A6) on the terminal cost function h will be needed.
These consequences will be gleaned by the methodology of variational analysis in
[12].

Proposition 2 (joint properties of the terminal function). Assumptions (A4) and
(A6) on the separate functions

h���=h�����·�� h$=h�·�·�$�� (17)

guarantee that h has the following properties, involving all of its arguments to-
gether.
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(a) h is locally Lipschitz continuous on O×�0���×IRn.
(b) h is semidifferentiable on O×�0���×IRn with subderivative formula

dh�����$��� ′�� ′�$ ′�=3h$����� ·�� ′�� ′�+dh����$��$ ′�� �18�

(c) h has its subgradients on O×�0���×IRn given by

)h�����$�={
� �*�+�

∣∣� �*�=3h$������ +∈)h����$�
}
� �19�

(d) h is subdifferentially regular onO×�0���×IRn (i.e., its epigraph is Clarke
regular).

Proof. Argument for (a). The finite convexity in (A4) implies that h��� is locally
Lipschitz continuous on IRn for each �����∈O×�0��� [12, 9.14]. On the
other hand, the smoothness in (A6) implies that h$ is locally Lipschitz continuous
on O×�0��� for each $∈ IRn. It is elementary then that h�����$� is locally
Lipschitz continuous with respect to �����$�.
Argument for (b). By virtue of (A4), h��� is semidifferentiable on IRn for each

�����∈O×�0��� [12, 7.27]. To get the semidifferentiability of h itself, utilizing
the differentiability in (A6), we observe that 12h�����$���

′�� ′�$ ′� can be written
as

h��+2� ′��+2� ′�$+2$ ′�−h�����$+2$ ′�
2

+
h�����$+2$ ′�−h�����$�

2
�

(20)

where by the mean value theorem the first term in the sum has the representation

h��+2� ′��+2� ′�$+2$ ′�−h�����$+2$ ′�
2

=
=3���h��+#� ′��+#� ′�$+2$ ′� ·�� ′�� ′�

for some #∈�0�2� (depending on the various arguments). The continuous depend-
ence of the gradient in (A6) allows us to deduce from this representation that, as a
function of �� ′�� ′�$ ′� for each 2, the first term in the sum in (20) converges uni-
formly, as 2↘0, to the linear function given by the expression3��������$� ·�� ′�� ′�.
Of course, the second term in the sum in (20), as a function of $ ′, converges
uniformly as 2↘0 because of the semidifferentiability of h in its $ argument that
comes from (A4). Altogether, then, we do have the convergence property that is
required by the definition of h being semidifferentiable in all of its arguments. The
limit calculations have confirmed also that the semiderivatives are given by (18).
Argument for (c). In the terminology of [12, 8.3], the regular subgradient set

)̂h�����$� consists of all � �*�+� such that

� �*�+� ·�� ′�� ′�$ ′�� dh�����$��� ′�� ′�$ ′� for all �� ′�� ′�$ ′��

Through the subderivative formula (18), this comes down to the elements spe-
cified on the right side of (19); the right side is thus )̂h�����$�. By definition,
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the general subgradient set )h�����$� is formed by taking all limits of sequences
4� 5�*5�+5�6�5=1 with � 5�*5�+5�∈ )̂h��5��5�$5� and ��5��5�$5�→�����$�
(plus h��5��5�$5�→h�����$�, but that is automatic here by (a)). Any such
limit � �*�$� must have � �*�=3h$����� by the gradient continuity in (A6),
and it must also have +∈)h����$�; the latter follows because the (finite) convex
functions h

�5��5
converge pointwise to h��� ; see [6, Sec. 24]. Hence )h�����$�=

)̂h�����$�.
Argument for (d). Because h is locally Lipschitz continuous (and therefore has

no nontrivial “horizon subgradients” [12, 9.13]), the equality between )h�����$�
and )̂h�����$�, just verified, guarantees the subdifferential regularity of h [12,
8.11]. �

For the important role it will have in our analysis, we next introduce alongside
of �̂����� the following dual problem:

�̂
∗
����� maximize j�����+�−V ∗

� �+� over all+∈ IRn�

where V ∗
� is the convex function conjugate to V� , and j is the function defined by

j�����+�= inf$
{
h�����$�++ ·$}� (21)

Here j�����·� is the concave conjugate of −h�����·�, so �̂����� and �̂
∗
�����

are optimization problems dual to each other in the original sense of Fenchel;
cf. [6, Sec. 31]. It is interesting to note, although it will not be needed, that V ∗

�

can be identified with the value function that is defined like V� but for the forward
propagation of g∗ with respect to a certain Lagrangian dual to L; see [13, Theorem
5.1].

Theorem 1 (parametric optimality). For every �����∈O×�0���, the optimal
value in problem �̂�����, which is p�����, is finite and agrees with the optimal
value in the dual problem �̂

∗
�����. The optimal solution sets

X����� �= argmin �̂������ Y ����� �=argmax�̂
∗
������ (22)

are nonempty, convex and compact, and they are characterized by

�$�+�∈X�����×Y ����� ⇐⇒ +∈)V��$��−+∈)h����$�� (23)

Proof. The coercivity assumed in (A5) makes V� be coercive for every � ∈�0���;
this was proved in [13, Corollary 7.7]. In �̂�����, we are minimizing the sum of
this coercive convex function (which is also proper and lsc) and the finite convex
function h�����·�. Such a sum is itself a coercive convex function that is proper
and lsc, and its minimum is therefore finite and attained on a compact set.
The finiteness of h��� entails, on the same grounds, the coercivity of −j and

leads us to the conclusion that the maximum in �̂
∗
����� is attained on a compact

set. The fact that the maximum agrees with the minimum, and that the optimal
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solutions are characterized by the subgradient conditions in (23), is a standard
feature of Fenchel duality in these circumstances; cf. [6, Sec. 31]. �

To proceed further than in Theorem 1, we need to verify for the function being
minimized in �̂����� a boundedness condition which is central to the theory of
finite-dimensional parametric minimization, as in [12, 1.17].

Proposition 3 (parametric inf-boundedness property). Let ��̄��̄�∈O×�0���,
and consider any 2>0 small enough that �����∈O×�0��� when ��−�̄��2
and ��− �̄��2. Then

∀:∈�0���� ∃;∈�0��� such that

�$��; when

{
V ���$�+h�����$��: with
��−�̄��2 and ��− �̄��2�

(24)

Proof. We know that V� is coercive and depends epi-continuously on � . This im-
plies that the conjugate convex function V ∗

� is finite and likewise depends epi-
continuously on � (since epi-continuity is preserved under the Legendre-Fenchel
transform [12, 11.34]). But finite convex functions epi-converge if and only if they
converge pointwise, uniformly on bounded sets [12, 7.18]. It follows that, for any
2>0 and !>0, there exist r >0 and s>0 such that

V ∗
� �+

′��V ∗
�̄ �0�+r �+′�+swhen �+′��!� ��− �̄��2�

When conjugates are taken on both sides with respect to +′, this inequality trans-
lates to

V��$��!max40��$�−r6−V ∗
�̄ �0�−swhen ��− �̄��2�

but all we will really need is the consequence that

∀!>0� ∃"∈ IR such thatV��$��!�$�−" for all $ when ��− �̄��2� (25)

Next we observe that, because h is locally Lipschitz continuous (by Proposition
2(a)), there is a Lipschitz constant > for h on the neighborhood of ��̄��̄�0� defined
by ��−�̄��2, ��− �̄��2, �$��2. In particular, that yields

h�����0��h�0�0�0�−2>2 (26)

and �h�����$ ′�−h�����$���>�$ ′−$� when �$��2 and �$ ′��2. The latter
ensures for the convex function h���=h�����·� that

+∈)h����0� �⇒ �+��> (27)

(see [12, 9.14]). The subgradient set in (27) is nonempty (because h��� is finite),
and its elements + are characterized by the inequality h����$��h����0�++ ·$
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holding for all $∈ IRn. The estimates in (26) and (27) yield through this inequality
the lower bound:

h�����$��−>�$�+h�0�0�0�−2>2 for all $ when ��−�̄��2 and ��− �̄��2�

Returning now to (25) and taking !>>, we see there will exist a constant ? such
that

V ���$�+h�����$���!−>��$�−? for all $ when ��−�̄��2 and ��− �̄��2�

Then obviously (24) holds, as needed. �

Theorem 2 (Lipschitz continuity and subgradients of the value function). The
function p is locally Lipschitz continuous on O×�0���, and its subgradients obey
the rule that

� �*�∈)p����� �⇒
{
� �*+H�$�+��=3h$����� for
some �$�+�∈X�����×Y ������

(28)

Proof. Let f �����$�=V ���$�+h�����$�. The property of f in Proposition 3
is known by [12, 1.17] to ensure that the parametric optimal value inf$ f �����$�,
which again is p�����, is lsc in its dependence on �����. It further yields by [12,
10.13] the estimate

)p�����⊂{
� �*�

∣∣� �*�0�∈)f �����$� for some$∈ argmin �̂�����
}
�
�29�

Because h is locally Lipschitz continuous by Proposition 2(a), we can apply the
subgradient rule in [12, 10.10] to see that )f �����$�⊂�0�)V ���$��+)h�����$�.
Invoking (7) and the subgradient formula in Proposition 2(c), along with the sub-
gradient condition (23) that characterizes optimality in �̂����� as well as �̂

∗
�����,

we are able then to pass from (29) to (28).
Another consequence of Proposition 3 is that the mapping ����� �→ argmin

�̂�����=X����� is locally bounded with respect to any compact subset C
of

{
�����∈O×�0���

∣∣p������:
}
, for any :. The mapping ����� �→

argmin �̂
∗
�����=Y ����� is locally bounded then on such a set C as well; this

is true because +∈Y ����� implies −+∈)h����$�, and the convex functions h���
are Lipschitz continuous on a neighborhood of the compact set X�����, locally
uniformly with respect to ����� (by Proposition 2(a)).
It follows from the continuity of the Hamiltonian H that the mapping from

����� in such a set C to the set of � �*� described on the right side of (28) is
locally bounded. That guarantees the boundedness of any sequence of subgradients
� 5�*5�∈)p��5��5� with ��5��5�→����� and p��5��5�→p�����. Then,
however, p has to be locally Lipschitz continuous (because this boundedness elim-
inates any nontrivial “horizon subgradients”) [12, 9.13(a)]. �

The next stage of our analysis requires a minimax representation of the func-
tion p.
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Proposition 4 (minimax representation). The function k defined by

k�����$�-��=K���$�-�−g∗�-�+h�����$� (29)

is finite on O×�0���×IRn×IRn, convex in $, concave in -, and moreover
locally Lipschitz continuous and semidifferentiable with respect to all arguments.
It furnishes the representation

p�����=min
$∈IRn

max
-∈IRn

k�����$�-�=max
-∈IRn

min
$∈IRn

k�����$�-�� (30)

Furthermore, the associated saddle point set, which is nonempty, convex and com-
pact, has the form X�����×W����� (for the same X����� as above, but a set
W����� that is new), and is characterized by

�$�-�∈X�����×W����� ⇐⇒




∃+∈Y ����� and C ∈ IRn with
-∈)g�C�� and a Hamiltonian
trajectory �x�·��y�·�� with
�x�0��y�0��=�C�-� and
�x����y����=�$�+��

�32�

Proof. The initial claims about k follows from the properties already identified
for K, g∗ and h. For any finite convex-concave function, in this case k���=
k�����·�·�, the set of saddle points is always a product of closed, convex sets.
We need to demonstrate this product has the form described, and is bounded.
Let M���$�=argmax-

{
K���$�-�−g∗�-�

}
. The maximization half of the

condition for a saddle point of k��� is simply the condition that -∈M���$�. For
any such -, we have K���$�-�−g∗�-�=V ���$� by (15). Hence

k�����$�-�=V ���$�+h�����$�when-∈M���$�� (31)

By subgradient calculus, the elements -∈M���$� are characterized by

∃−C ∈)-�−K����$�-� such that C ∈)g∗�-�� (32)

Similarly, let N�����-�= argmin $

{
K���$�-�+h�����$�

}
, so that the min-

imization half of the condition for a saddle point of k��� corresponds to $∈
N�����-�. That is characterized by 0 being a subgradient of the convex function
K���·�-�+h�����·� at $, which through subgradient calculus [6] correponds to

∃+∈)$K���$�-� such that −+∈)$h�����$�� (33)

Having �$�-� be a saddle point means having both $∈N�����-� and -∈
M���$�. On the other hand, the conditions +∈)$ K���$�-� and −C ∈)-�−K�
���$�-� in (34) and (35) are, by [14, Theorem 4.1], jointly equivalent to the exis-
tence of aHamiltonian trajectory �x�·��y�·�� over �0��� that starts at �C�-� and ends
at �$�+�. The condition C ∈)g∗�-� in (34) is itself equivalent, through conjugacy,
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to -∈)g�C�. Applying (11) and the characterization of X����� and Y ����� in
(23), we obtain the description in (32) of the saddle point set.
This description confirms in particular the nonemptiness of the saddle point

set. It yields the boundedness of W����� through the fact that the Hamiltonian
dynamical system in question takes bounded sets into bounded sets, either forward
or backward in time. �

Theorem 3 (semidifferentiability of the value function). The function p is semi-
differentiable, with semiderivative formula of minimax type:

dp������� ′�� ′�= min
$∈X�����

max
+∈Y �����

43h$����� ·�� ′�� ′�−� ′H�$�+�6

= max
+∈Y �����

min
$∈X�����

43h$����� ·�� ′�� ′�−� ′H�$�+�6�
(34)

Proof. We apply Gol’shtein’s theorem [12, 11.53] to theminimax representation in
Proposition 4. The hypothesis of that theorem is satisfied because k is continuous
and semidifferentiable, and the saddle point set is bounded. The direct formula
obtained by this route is

dp������� ′�� ′� = min
$∈X�����

max
-∈W�����

dk�����$�-��� ′�� ′�0�0�

= max
-∈W�����

min
$∈X�����

dk�����$�-��� ′�� ′�0�0�� (35)

We calculate that

dk�����$�-��� ′�� ′�0�0�=dK���$�-��� ′�0�0�+dh�����$��� ′�� ′�0�� �38�

where thefinal term ismerely3h$����� ·�� ′�� ′�byProposition2(b).We then recall
from the Hamilton-Jacobi theory ofK that dK���$�-��� ′�0�0� equals−� ′H�$�+�
forany+∈)$K���$�-�, or for thatmatter−� ′H�C�-� forany−C ∈)�−K����$�-�;
cf. [14, Theorem 3.6]. In that way, utilizing the characterization of these two sub-
gradient conditions in terms of Hamiltonian trajectories as in the preceding proof
(through [14, Theorem4.1]), we obtain from (38) the reduction of (37) to (36). �

Theorem 4 (differentiability of the value function). Suppose that the function
h���=h�����·� is not just convex, but strictly convex and differentiable. Then
X����� and Y ����� reduce to singletons, and p is smooth (continuously differen-
tiable) with

3p�����=3h$�����−�0�H�$�+�� for the unique �$�+�∈X�����×Y ������
�39�

Proof. The strict convexity ensures that X����� is a singleton, and the differen-
tiability then makes Y ����� be a singleton because having +∈Y ����� entails
+=−3h����$�. Then, in the subgradient estimate of Theorem 2, there is only one
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candidate for membership in )p�����. Since p is locally Lipschitz continous, this
implies that p is smooth with this candidate element as its gradient [12, 9.18 and
9.19]. �

Corollary (differentiability of Moreau envelopes). For :>0, the Moreau envel-
ope function

p�:�C���=e:V��C�=min
$∈IRn

{
V ���$�+ 1

2:
�$−C �2

}

is continuously differentiable with respect to �:�C���.

Proof. Here we take �=�:�C�∈�0���×IRn and h�����$�=�$−C �2/2:. �
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